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Abstract

A new model for the aperture admittance of open-ended
waveguide structures radiating into a homogeneous, lossy
dielectric is presented. The model is based on the physical and
mathematical properties of the driving point admittance of
passive, stable one-port networks. The model parameters, which
depend upon the geometry of the waveguide and aperture, are
determined from a relatively small number of computed
admittances. This computed data is obtained by a full-wave
moment method solution and, hence, includes the effects of
radiation and energy storage in the near-field and the evanescent
waveguide modes. The accuracy of the numerical method is
demonstrated by comparison with measured values. As an
example, the model parameters are determined for the
coaxial-line geometry. The accuracy of the model, for both the
direct and inverse problem, is verified. The new model has
important applications in the field of dielectric spectroscopy.

L Introduction

The increasing use of microwaves and millimeter waves in such
diverse fields as communications, radar, medicine, biology,
agriculture and industrial processes demands accurate data on the
dielectric properties of materials. Classical techniques of
dielectric spectroscopy [1,2,3] generally involve measuring the
complex impedance, or the complex resonant frequency, of a two
terminal structure containing the material under test. These
techniques require extensive sample preparation which, in many
applications, is not practical.

A convenient system for the non-destructive measurement of
material permittivity consists of an open-ended waveguide'
sensor and a network analyzer. The sensor is placed in contact
with the material under test and the reflection coefficient is
measured. Knowledge of the relationship between the measured
reflection coefficient (I") and the permittivity (¢) then allows one
to determine the latter. Although accurate numerical methods
exist for the calculation of I" for a given &, in practice one is
interested in the inverse problem. Iterative inversion, based on
these numerical methods, are time consuming and yield no
information regarding the measurement uncertainty. Ideally, a
closed form expression for the permittivity as a function of the
reflection coefficient is required. Some attempt has been made
to this end in the case of open-ended coaxial lines [4,5,6,7,8,9,101.
The results, however, are based on static or quasi-static
approximations, and are valid only for restricted frequencies.

1 The term waveguide is used in it’s most general sense to
include transmission lines as well as hollow pipes.
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This paper presents a general technique for obtaining accurate,
broadband, aperture admittance models for open-ended
wavegnides in contact with homogeneous dielectrics. The model
is explicit and easily inverted.

II. Theory

Consider a uniform waveguide terminated in the plane z=0 by a
perfectly conducting screen containing the aperture (Fig. 1). The
guide is excited by the dominant mode and the frequency of
operation is low enough to ensure single-mode propagation. The
half-space, z>0, is filled with a homogeneous, linear, isotropic,
non-magnetic dielectric with relative permittivity €, = €'~ je”. In
this case, one can define the normalized aperture admittance in
terms of the dominant mode reflection coefficient at the aperture
by:

1-T 1H,

Y=——=

T14T Y,E,

)

Where H,, is the amplitude of the total (incident+reflected)
tangential magnetic field in the aperture, E, is the corresponding
electric field, I is the dominant mode reflection coefficient, and
Y, is the dominant mode wave admittance in the guide.

For any given waveguide and aperture geometry, this admittance
is a complex function of two complex variables,

Y(s,g,)=G(s,€,)+jB(s,€) V3]

where § =6+ j is the complex frequency variable, G is the
normalized conductance, and B is the normalized susceptance.
For any passive dielectric, this admittance must satisfy the same
physical requirements as the driving-point admittance of any
passive one-port network [11] The mathematical implications of
these physical properties are conveniently summarized by stating
that the aperture admittance must be a positive-real (p.r.) function
in the complex frequency plane. [11] This guarantees the
existence of a rational function expansion of the form:

i a,(&)s"
Yi5,8)=—""r— )
1+ {)lb,,‘(e,)s"‘

The final step is to model the dependance of the coefficients a,

and b,, on the permittivity. The p.r. character of the aperture
admittance and the fact that, for steady state and passive
dielectrics, the admittance must be an analytic function of € may
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be used to show that the coefficient a, is a function of the D.C.
conductivity of the material, independent of the permittivity. If
we consider only materials with no D.C. conductivity, this term
vanishes.

The remainder of the coefficients certainly depend upon the
permittivity. The p.r character of the admittance requires:

S{Y (R p=0=0 @
R{Y M} peo,650>0 (5)
Y(sH=Y'(s) (6)

Where R and 3 denote the real and imaginary part of a complex
quantity, respectively, and * denotes complex conjugation. In
addition, the permittivity of passive dielectrics is also a p.r.
function of frequency. Defining,

4(s) =z () %)

where the principal value of the square root is implied, one may

show that:
S{&H 4-0=0 8)
R{LEM 0-0050>0 €))
LsH=8 (10)

Substituting (3) in (4)-(6) and imposing conditions (8)-(10), one
concludes that the coefficients a,(€) and b,({) must be p.r. for
passive dielectrics. This requires the coefficients to be analytic
in the right-half of the {-plane. Therefore, Taylor’s theorem is
applicable and one may write,

a=fa ey n=iz.e  ap
p=0
e ipater meae

where the coefficients «,, and B,,, are real, and ¢ is any point in
the right-half plane. These series converge uniformly for all
points which lie in the largest open-disk with center ¢ which lies
in the right-half plane.

When the wavenumber in the external medium vanishes, the
admittance must likewise vanish. This requires o, =0 forall n.
Substitution of (11) and (12) into (3), truncating the sums, and
absorbing the various powers of ¢ into the coefficients yields the
final form of the approximating function:

3 5 s
A w
1+ 2=:lqZ B”'llcqsm

=1

Y(s.€)=

Finally, from the theory of electromagnetic scale models [12],
the parameters of (13) may be normalized such that the same
expression is valid for a given class of structures. For example,
theexpression for open-ended, 50 ohm, Teflon-filled coaxial tines
is:

N P
,§1,§1 G (sa)

T (14)
1+ £, 8 bocar

=1

Y(sa,g)=
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where a represents the radius of the inner conductor,

With a suitable model available, the approximation problem
becomes one of parametric modelling. This is accomplished by
a non-linear least squares fit (Levenberg-Marquardt) to the
admittance computed via the method of moments.

III. Results

To illustrate the technique, an admittance model for 50 ohm,
open-ended, Teflon-filled coaxial lines is developed. A moment
method (MoM) program was written based on [13). A
convergence study indicated that, for the frequency range of
interest, 11 TM,, modes and 11 triangular expansion function
were sufficient to approximate the aperture field. The program
was validated by comparison with [14] (Table 1) and by
measurements performed with an HP8510 network analyzer

(Figure 2).
The analysis was then performed for twenty normalized
frequencies in the range 0.01 <k <0.19 and 56 dielectric

constants in the range 1 <€’ < 80, yielding a total of 1120 data
points. The MINPACK routine LMDER1 [15], which
implements a modified Levenberg-Marquardt algorithm, was
used with the merit function:

1129 YMoM _ yModel
i1 0.01 xYMM

2

x (15)

to determine the model parameters. In (14) Y¥* and yMe%
represent the admittance, for (w;a,€’,), computed via MoM and

(14), respectively. An acceptable fit (x* < 0.5) was obtained for
N=M=4 and P=Q=8. Figure 3 shows the magnitude of the
resulting relative error:

Model _ yMoM
yrE Ly

AY = x1000  ppt (16)

I YMaM I
for the data used in the fit. Figure 4 shows the magnitude of the
corresponding relative error vs. the permittivity for kya = 0.19.

The solution of the inverse problem may be obtained as follows.
Define the foliowing functions:

4
b,= Z_‘,‘ o, (sa)  p=12,..8
b,=0
4
c,= gl Bsa* ¢g=12,..8
q
=1+ % Bolsa)”
In terms of these functions, (14) may be rewritten as:

20.-¥e) =0 a7

Considering Y to be the measured quantity, the solution of the
inverse problem is related via (7) to one of the eight roots of (17).
These roots are found by Laguerre’s method and selection of the
appropriate root is straight-forward. The magnitude of the
relative error in the solution of the inverse problem is shown in
Figure 5 for the case kya = 0.19. This data was obtained by setting

Y =Y in (17) and computing:



g —¢,
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IV, Conclusions

[ Al =l x100 % (18)

A new model for the aperture admittance of open-ended
waveguide structures was presented. The model is based on the
physical and mathematical properties of a passive, one-port
driving point admittance. The model is general, applicable to any
waveguide/aperture geometry providing the frequency is low
enough to ensure single-mode propagation. The model is
broadband, no static or quasi-static assumptions are made. The
model is explicit in frequency and material permittivity, allowing
simple inversion and sensitivity analysis. Finally, the model
parameters are easily determined from a relatively small number
of computed admittances.

To illustrate the validity of the new model, the case of an
open-ended coaxial line was investigated. The admittance data
was obtained by a full-wave moment method analysis and
includes the effects of radiation and energy storage in the
near-field and evanescent waveguide modes. The accuracy of
the resulting model for both the direct and inverse problem was
demonstrated. The new model should aid in the design and
optimization of the transducers for microwave induced
hyperthermia, microwave thermography and dielectric
spectroscopy.

Table 1
Reflection Coefficient of a 14 mm Coaxial Line at 1 GHz
a=2333mm, b=17589mm, € =215 €=100.0-;100.0

Magnitude of reflection Phase of reflection
coefficient coefficient

Tl IT.] [AIT.I} ¢° ¢° A¢°

This | Jenkins This | Jenkins

Work [14] Work [14]

0.6709 | 0.6715 | 0.0006 |-165.52] -165.55 | -0.03

iz

iz

Fig. 1: Geometry of the General Problem
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Fig. 2: Aperture Reflection Coefficient of a 3.6mm Coaxial Line
Radiating into Water at 25° C
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Fig.-3: Magnitude of the Relative Error in Aperture Admittance
Computed According to (16)



Fig. 4: Magnitude of the Relative Error in the Aperture Admittance
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Fig. 5: Magnitude of the Relative Error
in the Solution of the Inverse Problem
for Coaxial Line with kea =0.19
Computed According to (18)
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